

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

DEGRADATION OF TUNGSTEN CARBIDE IN LIQUID ZIRCONIUM IN A PROCESS LEADING TO MANUFACTURING OF COMPOSITE ROCKET ENGINES

http://home.agh.edu.pl/~grzesik

- rocket engines powered by solid fuel
- rocket engines powered by liquid fuel
- hybrid rocket engines

Composites built of high-melting metals and their carbides

- high hardness
- high abrasion, creep and cracking resistance
- resistance against thermal shocks
- relative low specific weight

- significant degree of process complication
- deformed shapes of the products
- application of high temperatures (~ 2000 °C)
- high costs

temperature: 1150 - 1400 °C; time: 1 - 4 h

change in linear dimensions: 0,8 % change in volume: 1,6 %

time: 1.5 – 24 h

temperature: 1400 °C time: 1,5 h

5 µm

ZrC

W

WC

Comparison between the activation energy of different processes analyzed by determining the mechanism of the reaction between WC and Zr AGH

Activation energy kJ/mol			
Reaction:	Self-diffusion		
$WC_{(s)} + Zr_{(l)} \rightarrow W_{(s)} + ZrC_{(s)}$	Carbon C ¹⁴ in W	Carbon C ¹⁴ in ZrC	Zirconium Zr ⁹⁵ in ZrC
255	169	288	540
	34%	13%	112%

Temperature range of reaction kinetics studies: 1150-1400 °C Temperature range of C¹⁴ and Zr⁹⁵ self-diffusion studies: 1000-1500 °C

